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Abstract

The human BARX2 gene encodes a homeodomain-containing protein of 254 amino acids, which binds optimally to the DNA
consensus sequence YYTAATGRTTTTY. BARX2 is highly expressed in adult salivary gland and is expressed at lower levels in
other tissues, including mammary gland, kidney, and placenta. The BARX2 gene consists of four exons, and is located on human
chromosome 11q25. This chromosomal location is within the minimal deletion region for Jacobsen syndrome, a syndrome
including craniosynostosis and other developmental abnormalities. This chromosomal location, along with the reported expression
of murine barx2 in craniofacial development, suggests that BARX2 may be causally involved in the craniofacial abnormalities in
Jacobsen syndrome. © 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction patchy immunohistochemical staining for CT have sig-
nificantly shorter survival than those patients whose

Medullary thyroid carcinoma (MTC) is a tumor of tumors stain positively and homogeneously for CT.
the calcitonin-secreting thyroid parafollicular C-cells Using a cell culture model for human MTC, we have
(reviewed by Ball, 1996). The differentiation status of shown previously that these cells can be induced to
MTC, as evidenced by its continued expression of the differentiate by activation of the ras/raf signal transduc-
calcitonin (CT) gene, is associated with good prognosis. tion pathway (Nakagawa et al., 1987; Carson et al.,
Thus, MTC patients whose tumors exhibit absent or 1995). This response includes morphological changes,

cessation of cell growth, and increased transcription of
the calcitonin gene.Abbreviations: CT, calcitonin; IPTG, isopropyl-b-D-thiogalactopyr-

anoside; MTC, medullary thyroid carcinoma; PAC, P1-derived artifi- The ras/raf pathway activates several protein kinase
cial chromosome; RRE, ras/raf responsive element; YAC, yeast cascades, which can result in the subsequent activation
artificial chromosome. of transcription factors; these, in turn, can alter gene* Corresponding author. Tel.: +1-410-955-8506;

expression and cell phenotype. To identify the transcrip-fax: +1-410-614-9884.
E-mail address: bnelkin@jhmi.edu (B.D. Nelkin) tion factors which mediate ras/raf dependent differenti-
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ation in MTC cells, we have examined the control of obtained from Clontech, and were hybridized with the
BARX2 cDNA.ras/raf mediated transcription of the calcitonin gene.

Within the calcitonin gene promoter, we have identified
a ras/raf responsive transcriptional element (RRE), 2.3. DNA binding specificity
between −206 and −132 base pairs upstream from the
transcription startpoint (Thiagalingam et al., 1996). The DNA binding specificity of the lgt11 BARX2

cDNA clone was initially examined by filter binding.Within this element, two protein binding domains were
identified; either of these domains is sufficient to confer The lgt11 BARX2 clone was plated at a density of 400

plaques per 10 cm petri dish, using top agarose contain-responsiveness of a reporter gene to ras/raf activation.
Using DNA affinity cloning, we have isolated genes for ing 10 mM IPTG to induce expression. Plaques were

allowed to develop, and a nitrocellulose filter was placedtranscription factors binding to each of these domains.
One of these proteins, RREB-1, is a zinc finger protein on the agarose to adsorb the lacZ–BARX2 fusion

proteins. The filter was then cut into three parts; each(Thiagalingam et al., 1996). Here, we report the cloning
and chromosomal location of BARX2, the gene for a part was assayed for binding to a separate catenated

double-stranded oligonucleotide probe, as described pre-homeodomain protein which binds to this ras/raf ele-
ment in the calcitonin gene promoter. The murine viously (Thiagalingam et al., 1996). The oligonucleo-

tides used (described previously; Thiagalingam et al.,homolog, barx2, has been reported to be expressed in
neural and craniofacial development (Jones et al., 1997). 1996) were 1–2 (the upstream C-rich domain of the CT

gene RRE), 7–8 (the CT gene RRE octamer domainWe find that the BARX2 gene maps to human chromo-
some 11q25, a region of the genome consistently deleted probe used for screening for BARX2), and 5–6 (a

random sequence oligonucleotide). The binding reactionin Jacobsen syndrome, which is characterized by cranio-
facial defects and other abnormalities. Thus, in addition and washing conditions were as described previously

(Thiagalingam et al., 1996).to a possible role in differentiation of MTC, BARX2
may be a candidate for involvement in Jacobsen Determination of the BARX2 consensus DNA bind-

ing sequence by CASTing ( Wright et al., 1991) wassyndrome.
done as described previously (Thiagalingam et al.,
1996). Briefly, DNA sequences were selected from a
double-stranded degenerate oligonucleotide (5∞-GA-2. Materials and methods
GATATTAGAATTCTACTC-N23-GGTACATATACT-
CGAGT-3∞) library, by binding to GST–BARX2, selec-2.1. DNA affinity cloning
tion on glutathione–Sepharose, elution and PCR ampli-
fication. After five rounds of enrichment, DNAConstruction of the TT cell lgt11 cDNA expression

library has been described (Thiagalingam et al., 1996). sequences which bound to GST–BARX2 were cloned
into pBluescript and sequenced. DNA sequence align-Screening for CT gene binding proteins, by DNA affinity

cloning methods (Vinson et al., 1988), was as described ments were done using the Clustal W program
(Thompson et al., 1994). Conditions for gel mobility(Thiagalingam et al., 1996). In the present study, the

probe was catenated, double-stranded oligonucleotide shift assays were as described previously (Thiagalingam
et al., 1996). Here, 1 mg of thioredoxin–BARX2 was7–8 (5∞-ATCCATTTCCATCAATGACCTCAATGCA-

AATAC-3∞), labeled by nick translation with a-32P- incubated with 1 ng of 32P-end labeled oligonucleotide
7–8 (5∞-ATCCATTTCCATCAATGACCTCAATGCA-dCTP. Screening of 106 plaques with oligonucleotide 7–

8 yielded a positive clone. The cDNA insert of this clone AATAC-3∞) or oligonucleotide Barx2 cons (5∞-GA-
TCTTTCTTAATGGTTTTTCGA-3∞).was subcloned in pBluescript, and was used to probe a

human placenta cDNA library in lgt10 to obtain the
entire coding region. A 1.3 kb clone encoding full-length 2.4. Cell culture
BARX2 was obtained and subcloned into pBluescript.
The GenBank accession number for the BARX2 cDNA The TT cell line of human MTC has been described

(Nakagawa et al., 1987). TT:DRaf-1:ER is a subline ofsequence is AF031924.
TT cells in which a fusion gene, containing the kinase
domain of the c-raf-1 gene and the hormone binding2.2. Northern and dot blot hybridization
domain of the estrogen receptor, has been stably intro-
duced by retroviral infection (Carson et al., 1995). InHuman salivary gland poly A+ mRNA (Clontech)

and TT:DRaf-1:ER poly A+ mRNA (2 mg each) were TT:DRaf-1:ER cells, activation of c-raf-1 by addition of
1 mM b-estradiol results in terminal differentiation ofelectrophoresed, transferred to nylon membranes and

hybridized with the 1.3 kb BARX2 cDNA as described the cells, accompanied by cessation of growth and
increased transcription of the CT gene (Carson et al.,previously (Thiagalingam et al., 1996). A multiple tissue

Northern blot and a human Master RNA dot blot were 1995).
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2.5. Chromosomal localization AAGCGGTTTGGGGAAGACCTCGT-3∞ and 5∞-AT-
CCAACAGCTTCCCGCAAGCC-3∞ (378 bp product);
exon 4, 5∞-CTGGAAGGTTTTCTCTCCCTACTCTC-(i) Somatic cell hybrids. The NIGMS somatic cell

hybrid mapping panel 2 was screened by PCR, using as CC-3∞ and 5∞-CACTGCTGGAACAGATGGTTTAG-
ATGCAACG-3∞ (459 bp product). Annealing temper-primers 5∞-GCGGCATATCGCTCCTCTCGGT-3∞ and

5∞-GCTCGGTGAAGATGGTGCGACT-3∞, producing atures were 60°C for exons 1 and 2, and 57°C for exons
3 and 4. PCR products were gel purified and sequenceda 226 bp product from exon 2 (bases 296–521 in

Fig. 2A). These primers were also used to obtain a PAC directly (JHMI DNA Analysis Facility), using one of
the amplification primers as a sequencing primer.clone of BARX2 by PCR screening of the RPCI-1

library (Genome Systems). A subclone of the PAC clone
was partially sequenced to confirm that it contained
BARX2. 3. Results

(ii) FISH. DNA of the BARX2 PAC clone was
labeled with biotin-16-dUTP by nick translation. 3.1. DNA affinity cloning of BARX2
Human prometaphase spreads were fixed on slides and
pretreated with RNase and pepsin as described We have been interested in obtaining the transcription

factor(s) which interact with the ras/raf responsive ele-(Lengauer et al., 1994). Biotinylated probe sequences
were detected with avidin–DCS–fluorescein isothiocya- ment (RRE) of the CT gene. As described previously

(Thiagalingam et al., 1996), this RRE is bipartite,nate (Vector Laboratories, Burlingame, CA).
Chromosomes were counterstained with 4,6-diamidino- containing a C-rich domain and a homeobox octamer

containing domain. Previously, we had identified2-phenylindole (DAPI). The resulting G-banding
pattern and the signals were evaluated by standard RREB-1, a zinc finger protein which binds to the C-rich

region of the CT gene RRE (Thiagalingam et al., 1996).epifluorescence microscopy (Nikon Eclipse 800;
Lengauer et al., 1994). Photographs were taken using a In order to identify the protein(s) which bind to the

octamer containing domain, we screened a human MTCcooled CCD camera (Photometrics, Tucson, AZ). The
sequentially recorded gray-scale images were pseudocol- cell cDNA lgt11 expression library, by DNA affinity

cloning, using oligonucleotide 7–8 (Thiagalingam et al.,ored and merged, as described previously (Lengauer
et al., 1994). 1996), which contains the octamer binding domain of

the CT gene RRE. Screening of 106 plaques yielded a(iii) YAC mapping. YAC clones from a contig of
distal 11q (Tunnacliffe et al., 1999) were tested as
described previously (Penny et al., 1995) for the presence
of BARX2 by (a) PCR using primers specific for both
the 5∞ end and the 3∞ end of the gene, and (b) direct
hybridization using the full-length cDNA insert.

2.6. Genomic sequencing

A BARX2 PAC clone, containing exons 1–4 of the
BARX2 gene, was partially sequenced, using exon-
specific primers. Primers for intronic sequences were
designed to amplify each exon from 100 ng of human
genomic DNA (isolated from peripheral blood, using a
Qiagen Blood and Cell Culture DNA kit) from normal
subjects and trigonocephalic patients without 11q dele-
tion. (For exon 1 and exon 4, one primer was based on
untranslated cDNA sequences.) PCR amplifications (35
cycles of 95°C for 30 min, 57 or 60°C for 30 min, and
72°C for 30 min) were done in a 50 ml volume of 50 mM
KCl, 20 mM trisCl, 2 mM MgCl2, pH 8.4 at 25°C, Fig. 1. Binding of lacZ–BARX2 to sequences from the human calcito-
containing 200 ng of each primer, and 1 unit of Taq nin gene ras/raf responsive element. The lgt11 phage containing a

partial BARX2 cDNA was plated, expressed as a lacZ fusion protein,DNA polymerase. The primer pairs used were: exon 1,
and the fusion protein was transferred to a nitrocellulose filter. The5∞-CTCACCATGCATGCCACGCCG-3∞ and 5∞-GATC-
filter was cut into three parts, which were separately incubated withGCAAAGCACAGGCCACCTACACG-3∞ (267 bp pro-
double-stranded oligonucleotides 1–2, 5–6, and 7–8, as described in

duct); exon 2, 5∞-CTGGCCTGCTTCCCCACACCG- Materials and methods. Only oligonucleotide 7–8, the octamer con-
TTC-3∞ and 5∞-TGAGCCAAGGAGTGGACTCCGC- taining domain of the CT gene RRE, was specifically bound by the

lacZ–BARX2 fusion protein.CATAG-3∞ (493 bp product); exon 3, 5∞-AAGAN-
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Fig. 2. (A) Sequence of BARX2 DNA. The nucleotide sequence of BARX2 exhibits 86% homology with murine barx2. (B) The predicted protein
sequence of BARX2 also exhibits 86% identity with murine barx2. In the N-terminal portion, BARX2 lacks four amino acids encoded by the
murine barx2 gene. Asterisks indicate identical amino acids, while ‘:’ and ‘.’ indicate highly and moderately conserved amino acids, respectively.
The homeodomain in human BARX2 encompasses amino acids 108–167.

cDNA whose product bound oligonucleotide 7–8, but predicts a protein of 254 amino acids (Fig. 2B), with a
homeodomain closely related to the bar class of genesnot unrelated oligonucleotides (Fig. 1). This cDNA

product was used to screen a human placenta cDNA in Drosophila. Within the coding sequence, the cDNA
has 86% homology, at both the nucleic acid and aminolibrary, yielding a 1.3 kb cDNA containing the complete

coding sequence. The nucleotide sequence (Fig. 2A) acid levels, with the murine barx2 gene, a bar class
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Fig. 2. (continued )

homeodomain protein expressed in murine craniofacial promoter. Similarly, in competition experiments, Barx2
cons binding to BARX2 was competed by excess coldand neural development (Jones et al., 1997). There is

complete amino acid identity within the homeodomain Barx2 cons, but not by oligonucleotide 7–8 (Fig. 3C).
with murine barx2. We therefore propose to call this
human gene BARX2. 3.3. Expression pattern of BARX2

The expression pattern of BARX2 was examined.3.2. DNA binding specificity of BARX2
Using commercial multiple tissue dot blots and
Northerns of human poly A+ RNAs, we found thatThe DNA sequence binding specificity of BARX2

was determined by CASTing (Wright et al., 1991). expression of BARX2 was tissue specific; the highest
expression was seen in adult salivary gland mRNAGST–BARX2 fusion protein was bound to a pool of

random double-stranded oligonucleotides, and the (Fig. 4), with expression also detectable in placenta,
pancreas, mammary gland, kidney and trachea (databound oligonucleotides were eluted and amplified by

PCR. After five rounds of enrichment for oligonucleo- not shown).
BARX2 appears as a 2.2 kb mRNA species ontides which can bind GST–BARX2, the selected DNA

sequences were cloned in pBluescript and sequenced. Northern blots, somewhat larger than the 1.7 kb tran-
script reported for murine barx2 (Jones et al., 1997). InThe consensus BARX2 binding sequence appears to be

YYTAATGRTTTTY (Fig. 3A), which is closely related MTC cells, the level of BARX2 mRNA was not increased
by activation of c-raf-1 (Fig. 4), which induces terminalto the BARX2 binding sequences in the NCAM and

NCAM–LI genes (Jones et al., 1997), but somewhat differentiation of MTC cells (Carson et al., 1995). Since
portions of the salivary gland and craniofacial structuresmore divergent from the sequence in the human calcito-

nin gene promoter (oligonucleotide 7–8; see Materials are derived from the same region of the neural crest
(Nakamura, 1982), this adult salivary gland expressionand methods), which was used as an affinity probe to

isolate BARX2. The BARX2 consensus binding may be consistent with the report of murine barx2
expression in fetal craniofacial structures (Jones et al.,sequence contains an octamer sequence, TAATGRTT,

typical of homeobox protein binding sites, and this 1997).
octamer is flanked by pyrimidine-rich bases. We designed
an oligonucleotide, Barx2 cons (GATCTTTCTT- 3.4. The BARX2 gene is localized to chromosome 11q25,

within the minimal deletion domain for JacobsenAATGGTTTTCGA) containing the CASTing-derived
BARX2 consensus DNA binding site, for use in a gel syndrome
mobility shift assay. Fig. 3B shows that, in the conditions
of this gel mobility shift assay, oligonucleotide Barx2 Using PCR screening of a somatic cell hybrid panel

(NIGMS Panel 2, Coriell Cell Repository, Camden,cons, based on the BARX2 consensus binding sequence,
was bound much more efficiently by BARX2 than was NJ ), we found that BARX2 was on human chromosome

11 (data not shown). Further examination of a celloligonucleotide 7–8, from the human calcitonin gene
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A

B C

Fig. 3. Specificity of binding of BARX2. (A) Selection of high affinity binding sites by CASTing. GST–BARX2 was incubated with a double-
stranded degenerate oligonucleotide, and bound oligonucleotides were recovered and amplified after glutathione–Sepharose purification
(Thiagalingam et al., 1996). After five rounds of enrichment, the selected oligonucleotides were cloned into pBluescript and 19 clones were sequenced.
Sequences were aligned by Clustal W. (B) Gel mobility shift assay. 1 mg of thioredoxin–BARX2 was incubated with 1 ng of oligonucleotide 7–8
(from the human calcitonin gene RRE) or oligonucleotide Barx2 cons (based on the BARX2 consensus binding sequence). As a negative control,
BARX2 was incubated with unrelated oligonucleotide 5–6. Specific BARX2–DNA complexes are indicated by an asterisk. BARX2 binds well to
its consensus sequence, and also binds to the calcitonin gene RRE sequence, but not to the unrelated oligonucleotide. (C ) Competition of binding
to oligonucleotide Barx2 cons. Binding of thioredoxin–BARX2 with oligonucleotide Barx2 cons was done as in (B), except that the thioredoxin–
BARX2 was pre-incubated for 15 s with 10–800 ng cold competitor oligonucleotide Barx2 cons or oligonucleotide 7–8. The strong binding of
oligonucleotide Barx2 cons can only be competed by excess cold Barx2 cons.

hybrid containing all of human chromosome 11, except sequences and flanking intronic sequences match those
recently published by Hjalt and Murray (1999).for 11q23-ter, showed that the BARX2 gene was absent,

suggesting that BARX2 may be within the interval from Homeobox containing genes have been shown to be
involved in normal vertebrate development, and muta-11q23-qter (data not shown). This localization was

confirmed by FISH, which showed that BARX2 is at tion or deletion of specific homeobox containing genes
has been shown to be responsible for over a dozen11q25 (Fig. 5A). We have further localized BARX2 to

a YAC contig previously shown to map within this human developmental syndromes (reviewed in Mark
et al., 1997). Therefore, we considered whether theregion (Fig. 5B).

Using cDNA-based primers to sequence a PAC tem- expression pattern and chromosomal location of BARX2
might suggest its involvement in a known syndrome ofplate, we determined the positions of the introns of

BARX2 (Fig. 6). The cDNA sequences are contained abnormal development. Murine barx2 has been reported
to be expressed in craniofacial and neural developmentwithin 4 exons. Intron 1 is located after base 281, intron

2 after base 582, and intron 3 after base 667. The splice (Jones et al., 1997). This expression pattern, along with
our data localizing BARX2 to human chromosomedonor and acceptor sequences are good matches with

described canonical consensus splice sequences (Shapiro 11q25, suggested that BARX2 might be involved in
Jacobsen syndrome, a rare congenital disorder whichand Senapathy, 1987). Our sequences for BARX2 coding
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Thus, we have sequenced the BARX2 exon sequences
amplified from nine patients with trigonocephaly, but
without other features of Jacobsen syndrome. No mut-
ations of BARX2 were seen in these patients (data
not shown).

4. Discussion

The BARX2 protein may participate in ras/raf signal-
ing, since it binds to the octamer containing domain of
the bipartite CT gene RRE, which augments the ras/raf
response of the CT gene promoter in human medullary
thyroid carcinoma cells (Thiagalingam et al., 1996).
Other homeobox proteins have been reported to mediate
or modify the effects of ras in other systems. In
Caenorhabditis elegans, ras-dependent induction of
vulval differentiation appears to be mediated by theFig. 4. Expression of BARX2. Northern blot showing expression in
homeobox protein lin-39, a sex combs reduced homolog,poly A+ RNA from TT:raf-1:ER cells without b-estradiol ( lane 1),

TT:Draf-1:ER cells exposed to 1 mM b-estradiol for 48 h to activate and antagonized by the homeobox protein mab-5, an
Dc-raf-1 and induce cell differentiation ( lane 2) and human salivary antennapedia homolog (Clandinin et al., 1997). In ras-
gland ( lane 3). The filter was probed with the 1.3 kb hBARX2 cDNA. transformed 3T3 fibroblasts, interference with expres-
No change in BARX2 expression is seen upon exposure of

sion of the homeobox protein MSX-2 expression resultsTT:Draf-1:ER cells to estradiol. RNA markers (in kb) are indicated.
in reversion of the transformed phenotype; this suggestsThe lower panel shows hybridization to GAPDH as a measure of poly

A+ RNA loading. that MSX-2 may function downstream of ras in cell
transformation (Takahashi et al., 1996). Finally, and
similar to our findings, Gutierrez-Hartmann and col-includes abnormalities in craniofacial development.

Jacobsen syndrome is typically characterized by a leagues have characterized a ras-responsive element in
the prolactin gene promoter (Bradford et al., 1995).number of craniofacial abnormalities (craniosynostosis

with trigonocephaly, upslanting palpebral fissure slant, Like the CT gene RRE, the prolactin gene RRE is
bipartite, with an ets1 site juxtaposed to a GHF-1/Pit-1short nose and long philtrum, retrognathia, and lowset

or malformed ears), as well as growth and psychomotor POU homeobox protein site.
Our data (see Figs. 1 and 3) indicate that BARX2retardation, and, less commonly, cardiac defects and

thrombocytopenia (Jacobsen et al., 1973; Jones et al., can specifically bind different DNA sequences, with
differing efficiency. Such differences might reflect1995; Penny et al., 1995). Jacobsen syndrome is consis-

tently associated with loss of one copy of the end of different stringency of control of BARX2 target genes
in vivo. However, BARX2 binding may be modified inchromosome 11q; the breakpoint is often near fragile

site FRA11b, resulting in deletion from 11q23–11qter vivo by combinatorial interactions between BARX2 and
other proteins; such interactions have been described(Lewanda et al., 1995). Smaller deletions of 11q have

also been seen in Jacobsen syndrome; the minimal for several homeobox proteins, and these interactions
can modify the DNA sequence specificity, the bindingdeletion still associated with the typical features of the

syndrome encompasses 18cM (sex average; Dib et al., affinity, or the transcription activating ability of the
homeobox proteins (Takahashi et al., 1996; Knoepfler1996) from marker D11S1351 to the telomere (Lengauer

et al., 1994). While the large deletions in Jacobsen et al., 1997; Wu et al., 1997).
As mentioned above, genetic lesions in homeoboxsyndrome suggest that the overall phenotype results

from haploinsufficiency of several genes in this region, genes underlie many human developmental syndromes
(reviewed in Mark et al., 1997). These includethe expression pattern of murine BARX2 (Jones et al.,

1997) suggests that BARX2 may be a candidate for Waardenburg syndrome (commonly associated with
facial and pigmentary abnormalities and cochlear deaf-involvement in the craniofacial abnormalities in this

syndrome. ness), Boston-type craniosynostosis, and Rieger syn-
drome (associated with eye and tooth abnormalities);Since Jacobsen syndrome is invariably accompanied

by a large 11q deletion, it would be unlikely to find a these syndromes are due to loss of one functional copy
of the homeobox genes PAX3, MSX2, and PITX2,mutation in BARX2 in Jacobsen syndrome. Instead, we

have begun to examine the BARX2 gene in patients with respectively (Baldwin et al., 1992; Jabs et al., 1993;
Semina et al., 1996). Since complete deletion of onesome of the features of Jacobsen syndrome, but lacking

a cytogenetically visible deletion of chromosome 11q. copy of the gene can result in the clinical syndrome, it
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B
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Fig. 5. Chromosomal location of BARX2. (A) Chromosomal FISH. The hbarx2 PAC clone, labeled with biotin-16-dUTP, was hybridized with
normal human prometaphase spreads, and detected with avidin–DCS–fluorescein isothiocyanate, as described in Materials and methods. The only
detectable signal is at 11p25. (B) YAC contig mapping. A YAC contig for distal chromosome 11q, assembled by STS content mapping (Tunnacliffe
et al., 1999), was screened for BARX2 by PCR and cDNA hybridization. Positive and negative results are indicated, showing the location of the
BARX2 gene close to marker D11S1083. Marker prefixes ‘D11S’ are abbreviated ‘S’.

Fig. 6. Exon–intron boundaries of the human BARX2 gene. Exon sequences are shown in upper case, and introns in lower case. The base numbering
for the exons is according to the cDNA sequence in Fig. 2.

appears that many of these syndromes result from murine BARX2 and by the location of the BARX2 gene
in the minimal deletion region for Jacobsen syndrome,haploinsufficiency, rather than a dominant negative

effect. However, the gene targets for these homeobox suggests a possible interaction between ras/raf signaling
and homeobox proteins in craniofacial development.proteins have not yet been well characterized.

The possible involvement of BARX2 in Jacobsen Previous studies of craniofacial abnormalities, especially
craniosynostosis, provide ample, albeit circumstantial,syndrome, as suggested by the expression pattern of
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