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ABSTRACT 

This report presents two families with interstitial 11q24.2q24.3 deletion, associated with 

malformations, hematologic features and typical facial dysmorphism, observed in Jacobsen 

syndrome, except for intellectual disability. The smallest 700 Kb deletion contains only two genes: 

FLI1 and ETS1, and a long noncoding RNA, SENCR, narrowing the minimal critical region for some 

features of Jacobsen syndrome. Consistent with recent literature, it adds supplemental data to 

confirm the crucial role of FLI1 and ETS1 in Jacobsen syndrome: namely FLI1 in thrombocytopenia 

and ETS1 in cardiopathy and immune deficiency. It also supports that combined ETS1 and FLI1 

haploinsufficiency explains dysmorphic features, notably ears and nose anomalies. Moreover, it 

raises the possibility that SENCR, a long noncoding RNA, could be responsible for limb defects, 

because of its early role in endothelial cell commitment and function. Considering intellectual 

disability and autism spectrum disorder, which are some of the main features of Jacobsen syndrome, 

a participation of ETS1, FLI1 or SENCR cannot be excluded. But, considering the normal 

neurodevelopment of our patients, their role would be either minor or with an important variability 

in penetrance. Furthermore, according to literature, ARHGAP32 and KIRREL3 seem to be the 

strongest candidate genes in the 11q24 region for other Jacobsen patients. 

 

INTRODUCTION 

Jacobsen syndrome (JS) [OMIM#147791] is considered as a contiguous gene disorder 

caused by a large terminal or interstitial deletion of the long arm of chromosome 11. It was first 

described in 1973 by the Danish genetist Petrea Jacobsen [Jacobsen et al., 1973]. JS is characterized 

by intellectual disability (ID) of variable severity, typical facial dysmorphism, thrombocytopenia, pre- 
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and postnatal growth restriction, immune deficiency, autism spectrum disorders (ASD) and a wide 

range of malformations, mainly heart malformation (50%). Yet, over 200 cases have been described 

[Favier et al., 2015; Mattina et al., 2009; Grossfeld et al., 2004; Fryns et al., 1986]. Through genotype-

phenotype correlations and animal models, several genes have been proposed to contribute to JS 

phenotype, especially FLI1 and ETS1 [Favier et al., 2015; Carpinelli et al., 2015; Ye et al., 2010; Hart et 

al., 2000]. 

Here, we report on five new patients from two families that harbor very small inherited 

interstitial deletions within the region 11q24.2-q24.3 deleted in Jacobsen syndrome. All have the 

main features of Jacobsen syndrome, namely dysmorphism, malformations, thrombocytopenia and 

immune deficiency but normal cognitive development. Our study provides new insights about the 

role of FLI1 and ETS1 and confirms the crucial role of these two genes for JS phenotypes. It also raises 

the possibility that SENCR, a long noncoding RNA, could be responsible for limb defects, because of 

its early role in endothelial cell commitment and function. Then, it supports the role of causal genes 

for ID and/or ASD outside of the smallest deletion. 

 

MATERIALS AND METHODS 

Clinical assessment 

Both children have been referred to genetic consultations by pediatricians considering the 

multiple malformations, notably limb defects. Family B was included in this study thanks to a national 

cooperative effort collecting rare CNV in syndromic disorders. 

Family A 
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Patient III-2 (Fig1-1) was the first female child of unrelated French parents. Increased nuchal 

translucency was noticed at 1st trimester, with a normal karyotype. She was born at 37 WG, with 

normal measurements. At birth, severe brachydactyly of the left foot (Fig 1-2, C), mainly on the 3rd 

and 4th toes was noted, associated with a subaortic ventricular septal defect (VSD), initially large, 

which closed spontaneously within the 1st year of life, requiring no surgical treatment, a mild 

umbilical hernia and a small sacro-coccygeal fossea. Abdominal ultrasound was unremarkable. She 

presented dysmorphism with high forehead, hypertelorism, unilateral ptosis, epicanthal folds, broad 

nasal bridge with bulbous tip, dysplastic and little ears (Fig 1-2, C). Blood count showed fluctuating 

thrombocytopenia (minimum 137G/l) with elevated size of the platelets (12fl), transitory 

lymphopenia (1.43 G/l) encompassing all lymphocyte sub-populations, normal quantitative 

immunoglobulins and inconsistent microcytic anemia (9.6 g/dl, VGM 74.9 fl). She walked at 18 

months, with normal development of other motor skills and no language delay at the age of 22 

months.  

Her mother (II-3) presented similar dysmorphism with downslanting palpebral fissures, mild 

hypertelorism, short nose and small, low-set, posteriorly rotated ears (Fig 1-2, B). She underwent 

surgeries in infancy for strabismus and unilateral ptosis. She had spontaneous closure of a ventricular 

septal defect in infancy. She presented mild thrombocytopenia occurring during pregnancy without 

hemorrhagic event. Cognitive development was normal. She worked as a caregiver. 

Her maternal grandfather (I-3) also presented mild dysmorphism with short nose, protruding 

and posteriorly rotated ears, flat philtrum, thin upper lip, short neck (Fig 1-2, A). He has suffered 

from chronic bronchitis since the age of 20. He presented asymptomatic thrombocytopenia and 
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moderate lymphopenia (1,13 G/l). Quantitative immunoglobulins were normal. He had no learning 

difficulties. He worked as a team leader in an electrical grid company. 

Family B 

Patient III-2 was the first male child of unrelated French parents (fig 1-1). Pregnancy was 

marked by intrauterine growth restriction and increased nuchal translucency at 3.4mm. Prenatal 

karyotype was normal. On 2nd trimester, left hand anomaly was detected. He was born hypotrophic 

at 37 WG: birth weight 2415g (-1.5 SD), length 45 cm (-1.5 SD). Apgar score was 5/9, with a transitory 

respiratory distress. At birth he presented mild axial hypotonia and peripheric hypertonia, 

hypospadias, mild pectum carinatum and facial dysmorphism with discrete plagiocephaly, prominent 

forehead, dysplastic and low-set ears, relatively long philtrum, anteverted nostrils and short neck. He 

presented severe brachydactyly on the left hand with 2nd, 3rd, 4th and 5th fingers present as nubbins 

and clinodactyly of the right 5th finger. Abdominal ultrasound found a small, unilateral and transient 

pyelectasis. On blood count, fluctuant thrombocytopenia (minimum at 46 G/l), anisocytosis and giant 

platelets, lymphopenia, immunoglobulin G deficiency and transitory anemia (9.7g/dl) were reported. 

No cardiac malformation was noticed. At 9 months, growth parameters and psychomotor 

development were normal.  

His mother (II-2) presented mild dysmorphism with high forehead, downslanting palpebral 

fissures, short nose, long philtrum with thin upper lip and short neck. She had surgery in infancy for 

protruding ears. She presented persistent thrombocytopenia (60G/l), lymphopenia (0.75 G/l) and 

global hypogammaglobulinemia (IgG 2.4g/l, IgA 0.5g/l, IgM 0.34 g/l). She experienced pulmonary 

embolism 1 month after delivery. Cognitive development was normal. She went to graduate school. 
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DNA analysis 

Written informed parent consents were obtained for genetics analysis. DNA was extracted 

from peripheral blood lymphocytes.  

Array CGH (Comparative genomic hybridization) was performed using the oligonucleotide 

60K microarray platform (Agilent) for family A and the oligonucleotide 4x180K microarray platform 

(Agilent) for family B. Patient and pooled same-sex reference DNA were labeled with Cy5-dCTP and 

Cy3-dCTP respectively and hybridized to the array platform, as recommended by the manufacturer’s 

protocol (Agilent Technologies). Data analysis was performed using Cytogenomics 3.0.2.11. 

FISH (Fluorescence in situ hybridization) analysis was performed on metaphases using 

probe RP11-754N12 (11q24.3) and control probe CTC-908H22 for family A and using probe RP11-

138K22 (11q24.3) and control probe RP11-243M7 (11q15.4) for family B. Data analysis was 

performed using CytoVysion 7.3. 

Ethics statement 

The study was approved by an ethics committee. 

RESULTS 

 Array CGH analysis in family A proband (III-2) identified a 700kb interstitial 11q24.3 deletion 

(arr[GRCh37]11q24.3(127970179_128673011)x1) containing two OMIM genes: ETS1 (OMIM 164720) 

(V-Ets Avian Erythroblastosis Virus E26 Oncogene Homolog 1) and FLI (OMIM 193067) (Friend 

Leukemia Virus Integration 1), and a cytoplasmatic long noncoding RNA, SENCR (OMIM 615815) 
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(smooth muscle and endothelial cell–enriched migration/differentiation-associated long noncoding 

RNA) (Supplemental data). FISH analysis confirmed the deletion in the proband and showed that it 

was inherited from the mother and the maternal grand-father (Supplemental data). 

Array CGH in family B proband (III-2) showed a 1.5 Mb interstitial 11q24.2q24.3 deletion 

(arr[GRCh37]11q24.2q24.3(127679132_129196108)x1) including the three genes above and five 

other ones : KCNJ1 (OMIM 600359), KCNJ5 (OMIM 600734), TP53AIP1 (OMIM 605426), C11orf45 and 

ARHGAP32 (OMIM 608541) (Supplemental data). The deletion was confirmed by FISH analysis, 

showing that it was inherited from the mother (Supplemental data). 

 

DISCUSSION 

Here we report two families with inherited interstitial deletions in 11q24.2q24.3 region, 

which are the smallest ever described in Jacobsen locus (respectively 700kb and 1.5 Mb, Fig 2, Table 

1). Family A deletion encompasses only two genes: FLI1, ETS1 and a long noncoding RNA, SENCR, 

supporting the recent advances concerning the crucial role of FLI1 and ETS1 in some Jacobsen 

syndrome features. 

FLI1 is involved in Paris-Trousseau syndrome (PTS), a highly penetrant platelet disorder in JS 

(88%) [Favier et al., 2003; Grossfeld et al., 2004]. PTS is characterized by a neonatal 

thrombocytopenia which may resolve over time and a platelet dysfunction usually persistent 

throughout life. Platelets often contain giant alpha granules. FLI1 transcription factor interacts with 

genes involved in vasculogenesis, hematopoiesis and intercellular adhesion. Fli+/- mice expressed 

thrombocytopenia and Fli-/- mice had an embryonic lethality due to cranial hemorrhages [Hart et al., 
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2000]. In humans, a few heterozygous FLI1 missense and frameshift variants in the DNA-binding 

domain have been shown to cause platelet disorder [Stevenson et al., 2015; Stockley et al., 2013]. In 

our series, all patients present FLI1 haploinsufficiency and express a variable thrombocytopenia 

which supports the role of FLI1 in platelet dysfunction.  

ETS1 is highly suspected to cause congenital heart malformations, a major cause of 

morbidity in JS with a penetrance over 50%, mostly ventricular septal defects and hypoplastic left 

heart syndrome [Grossfeld et al., 2004]. ETS1 transcription factor is expressed in vascular 

endothelium, endocardium and neural crests. It is necessary for heart cell migration and 

differentiation [Beh et al., 2007]. Ets1-/- xenopus showed hypoplastic left heart syndrome-like [Nie 

and Bronner, 2015] and Ets1-/- mice showed membranous ventricular septal defects, bifid cardiac 

apex, and non-apex-forming left ventricle which are frequent cardiac malformations in JS [Ye et al., 

2010]. By whole-exome sequencing, a de novo ETS1 frameshift variant in a patient with heart 

malformation was identified [Glessner et al., 2014]. In our series, all patients showed ETS1 

haploinsufficiency, but only two had a septal defect, which is consistent with an incomplete 

penetrance.  

Congenital anomalies of the kidney and urinary tract (CAKUT) are quite frequent in JS, 

occurring in 13% of the patients [Grossfeld et al., 2004]. These are mostly duplicated ureters, 

unilateral renal agenesis, dysplastic kidneys, narrowed ureters and dilated renal calyces. Recently, Ye 

et al., (2018) highlighted the role of ETS1 in structural kidney defects, by defining an 8.1 Mb “kidney 

critical region” through genotype-phenotype correlations. Furthermore, they demonstrated that 

deletion of Ets-1 in mice causes kidneys defects (duplicated kidneys, hypoplastic kidneys, dilated 

renal pelvis and calyces) [Ye et al., 2018]. Interestingly, in our study patient B-III-2 presented a mild 
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resolutive pyelectasia, which could be related to ETS1. Renal ultrasound was normal in patient A-III-2 

and data is not available for other patients.  

ETS1 is also involved in immune deficiency and autoimmunity. Low IgG levels, decreased 

number of memory B, T or NK cells and impaired response to S. pneumoniae polysaccharide 

vaccination were described in JS patients [Dalm et al., 2015]. ETS1 is highly expressed in lymphoid 

tissues and cells. Knockout Ets1 mice showed aberrations in B cells differentiation, aberrant thymic 

differentiation, reduced peripheral levels of T and NK cells and impaired IL-2, Th1 and Th2 production 

[Blazina et al., 2016]. In our series, all patients presented an immune deficiency (lymphopenia and/or 

hypogammaglobulinemia), supporting the role of ETS1.  

Combined FLI1 and ETS1 haploinsufficiency was suspected to cause craniofacial and middle 

ear abnormalities, on mice model [Carpinelli et al., 2015]. ETS1 and FLI1 both belong to the ETS 

transcription factor family and are highly conserved during evolution. They probably result from the 

duplication of the same gene and possibly have redundant functions. Fli1+/- mice had short nasal 

bone, hearing loss, otitis media (inflammatory epithelia) and mild thrombocytopenia [Carpinelli et al., 

2015]. Ets1+/-Fli1+/- mice expressed the same features but with a more severe phenotype, and 

specific ear malformations (small middle ear cavity, deformation of the stapes, ossicle fixation). 

Abnormal migration, proliferation or differentiation of neural crest cells in the frontonasal process, 

depending on both ETS1 and FLI1, is suspected. Unlike JS patients, who have frequent hypertelorism, 

the inner canthal distances were normal in Fli1+/− and Ets1+/−Fli1+/− mice. Similar dysmorphism in our 

series’ patients supports the role of combined FLI1 and ETS1 haploinsufficiency in humans for this 

feature, especially for nose and ear morphology.  
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Transversal limb defects are rarely considered secondary to genetic factors but concern two 

patients is our series. Limb malformations described in JS are mostly finger syndactyly, finger pads or 

Vth finger clinodactyly [Grossfeld et al., 2004]. Nevertheless, transverse limb defects have already 

been reported three times in JS [Von Bubnoff et al., 2004; So et al., 2014; Fujita et al., 2010]. Low 

penetrance of this malformation could be explained by a multifactorial model. Thrombocytopenia, 

due to FLI1 deletion, could be responsible for prenatal hemorrhage and consequently interrupt limb 

vascularization, as suggested in Poland syndrome. ETS factors act directly on the ZRS (ZPA regulatory 

sequence) mediating a differential effect on Sonic hedgehog (SHH). However, variants in ETS factors 

lead to preaxial polydactyly [Lettice et al., 2012]. SENCR, a long noncoding RNA regulating the 

endothelial and smooth muscle cell differentiation, overlaps with FLI1 in 1st intron in the antisense 

direction, but knockdown of SENCR has no effect on FLI1 and neighboring genes. However, it 

regulates the expression of HCASMCs (human artery, heart, lung, skin, and skeletal muscle) genes 

[Boulberdaa et al., 2016]. On HUVEC (human umbilical endothelial cells), SENCR was shown as an 

early induced lncRNA promoting mesodermal and endothelial cell (EC) commitment [Boulberdaa et 

al., 2016]. The EC migratory capacity was respectively inhibited or stimulated after SENCR silencing or 

overexpression. SENCR expression was down regulated in critical limb ischemia tissues and in 

endothelial cells derived from premature coronary artery disease [Boulberdaa et al., 2016], 

suggesting a role of SENCR in limb ischemia.  

Intellectual disability (ID) is a main feature in Jacobsen syndrome (85 % [Grossfeld et al., 

2004]). Likewise, autism spectrum disorders (ASD) have been recently shown in a subsequent part of 

JS patients (47% [Akshoomoff et al., 2015]). However, strikingly, our patients had normal 

psychomotor and cognitive development, even if mild neurodevelopmental disorders (NDD) could 

develop in both children as they grow up. Given the varying penetrance of NDD in JS, it cannot be 
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concluded that ETS1, FLI1 and SENCR do not participate, even if it seems very unlikely. To note, one 

patient was identified with an ETS1 de novo variant in association with congenital heart disease and 

intellectual disability (encephalopathic epilepsy), by WES [Homsy et al. 2015]. However no data 

concerning other variants identified by exome were available. It could be interesting to check if other 

variants could explain the encephalopathic epilepsy. 

According to the recent literature ARHGAP32 and KIRREL3 seem to be the strongest 

candidate genes for ID and/or ASD in 11q24.2q24.3 region. ARHGAP32 encodes a neuron-associated 

GTPase-activating protein that regulates dendritic spine morphology and strength [Akshoomoff et al., 

2015]. ARHGAP32 is expressed early in brain mouse development. ARHGAP32-deficient neurons 

showed reduced γ-aminobutyric acid type A receptor (GABAAR) levels and impaired GABAAR-

mediated synaptic transmission. ARHGAP32-deficient mice exhibited ASD-like social behavior 

[Nakamura et al., 2016]. Several patients have been reported with larger 11q24 deletion 

encompassing ARHGAP32, all presenting with ID or autistic features [Akshoomoff et al., 2015]. To 

note, one patient expressed nonsyndromic ID and ASD with a 240 kb deletion containing only KCJN1, 

KCJN5, TP53AIP, and ARHGAP32, supporting the causal role of ARHGAP32 in NDD. However, patients 

from family B have normal neurodevelopment so far, but this data could be consistent with an 

incomplete penetrance of ARHGAP32 in ASD and ID. 

KIRREL3 (OMIM 607761) codes for a synaptic molecule of the immunoglobulin superfamily. 

Three missense variants in KIRREL3 have been identified in five patients with mild to severe ID [Bhalla 

et al., 2008]. Furthermore, Kirrel3-/- mice have been shown to express hyperactivity, autistic features 

[Hisaoka et al., 2018] and recognition memory deficit [Choi et al., 2015]. Guerin et al., (2012)  

described a single patient with a 2.89-Mb deletion in distal 11q who had autistic features and 
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neurodevelopmental delay and proposed KIRREL3 as a candidate for causing neurologic features in 

the patient. Interestingly, the deletion also contains ARHGAP32 so it is not possible to conclude on 

the causal role of only one gene.  Moreover, Akshoomoff et al., (2015) found ASD in patients without 

deletion of KIRREL3 suggesting that this gene is not causal for all patients with distal 11q deletions.  

In conclusion, we have presented the two smallest 11q24.2q24.3 inherited deletions in two 

families having the main features of Jacobsen syndrome but with no cognitive impairment. This 

study, in addition to data resulting from the literature, underpins the role of FLI1 in Paris-Trousseau 

syndrome, ETS1 in cardiopathy and immune deficiency, and combined ETS1 and FLI1 

haploinsufficiency in facial dysmorphism. The long non coding RNA, SENCR, could be involved in 

transversal limb defect. Finally, the report can suggest the role of other genes outside the smallest 

deletion in intellectual disability, namely KIRREL3 and ARHGAP32. However, this complex region will 

need further explorations in order to be well defined.  
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FIGURES LEGEND 

 

Figure 1 

Fig 1-1) Pedigrees of Family A and B 

Fig 1-2) Pictures of Family A members.  

A) Patient I-3, grandfather, 65 years-old  

B) Patient II-3, mother, 33 years-old  

C) Patient III-2, proband, aged 9 months. See the left foot showing severe brachydactyly. 

Figure 2: Overview of the 11q24.2q24.3 region. Deletion size comparison between our cases and 

previously reported interstitial or short terminal deletions encompassing 11q24.2q24.3 region. 
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Features 
frequency in JS 
(%) (Grossfeld 
et al. 2004) 

Patient III-2 Patient  II-3 Patient I-3 Patient III-2 Patient II-2 

Size of the deletion and localization 
(Hg19) 

700kb 
11q24.3 

(127970179-128673011) 
 

1.5 Mb 
11q24.2q24.3 

(127679132-129196108) 
 

2.4Mb 
11q24.2q24.3 
(127217775-
129666990)  

2.9 Mb 
11q24.2q24.3 
(127262460-
130161921) 

3.16Mb 
11q24.2q24.3 
(125780310-
128942331)  

4.74Mb 
11q24.2q24.3 
(124784790-
129524790) 

5.4MB 
11q24.2q25 
(127128730-
132555165)  

 

Age at diagnosis (M: months, Y:years) 5 M 33 Y 65 Y 6 M 36 Y 19M 4Y 67Y 8M 21Y  

Intrauterine growth restriction - - - + - + - - NR - NR 

Neurological 
features 

Developmental 
delay/ ID 

- - - - - + + - (but school 
difficulties) 

+ + (IQ50) 85 

Other 
neurological 
features 

- - - Mild axial 
hypotonia 

- Global 
hypotonia 

- Seizures  
 

 -  

Abnormal brain 
MRI 

ND ND ND ND 
 

ND - 
 

-  
 

Periventricular 
nodular 
heterotopia 

Delayed 
myelination 

NR 51 

Austim 
spectrum 
disorders (ASD) 

- - - - - - + -  + 47  
(Akshoomoff,et al. 
2015) 

Hematological 
abnormalities 

Thrombocytope
nia (PTS) 

+ + + + + + + - - - 94 

 Transient 
anemia 

+ ND ND + NR + + NR - - NR 

 Recurrent 
infections 

- - + - - - - - NR - 54 

 Lymphopenia + (T,B and NK-
cells) 

ND + + (T, B, NK) + NR NR - NR - NR 

 Quantitative 
immunoglobulins 

Normal ND Normal IgG deficiency Global 
gammaglobulin 
deficiency  
(Ig G, A, M) 

NR NR - NR - NR 

Malformations Cardiac 
 

+ VSD + VSD - - - + + VSD - - - 56 

 
Kidneys 

- NR NR Mild 
pyelectasy 

NR Right stenotic 
megaurether 

- -  - 8 

 Limb anomalies Unilateral 
severe foot 
brachydactyly  

- - Unilateral 

severe hand 

brachydactyly

,fifth finger 

clinodactyly 

- - - Unilateral 
transverse limb 
defect below 
the elbow 

5th finger 
shortening, 
squaring of the 
fingertips 

- 87 

Sensory defects Hearing loss Mild - - - - - - - + - NR 

 Ophtalmic 
anomalies 

Strabismus 
ptosis 
epicanthal 
folds 

Strabismus, 
ptosis 

- - - Limitation in 
abduction of 
right eye 
smaller right 
eyelid 
telecanthus 

- Bilateral ptosis - - NR 

TABLE 1 

  Table 1. Comparative clinical and molecular features between Family A and B patients, and previously reported cases with interstitial or short terminal 
deletions encompassing 11q24.2q24.3 region 
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Facial dysmorphic features + + + + + + + + + + Features 
frequency in JS 
(%) (Grossfeld 
et al. 2004) 

Head Skull deformities - - - Plagiocephaly - - Trigonocephaly - Macrocephaly Macrocephaly NR 

 High forehead + + + + + - + - + + 31 

Eyes Sparse eyebrows 
 

+ - - + - - + - - - 65 

 Hypertelorism 
 

+ + + + - - + + - - 97 

 Downslanting 
palpebral fissures 

+ + + + + - - + - - 91 

 Strabismus 
 

+ + - - - - - - - - 74 

 Ptosis 
 

+ + - - - - - + - - 68 

 Epicanthal folds + - - - - + - - - - 44 

Nose Broad nasal bridge + - + + - - - - + + 86 

 Flat nasal bridge + + + + - - - - + + 46 

 Short nose + + + + + - + - + + 75 

 Anteverted 
nostrils 

+ + - + - - + - - - 71 

Ears Low-set ears + + - + - - - + - + 83 

 Dysplastic ears + + + + + + - - + - 91 

Mouth Long philtrum + + + + + - - - - - 63 

 Thin upper lip + + + + + - + + - - 91 

 Downturned 
corners of the 
mouth 

+ + + + + - - - - - 77 

Neck Short neck + + + + + - + - - + 64 

Table 1. Comparative clinical and molecular features between Family A and B patients, and previously reported cases with interstitial or short terminal deletions encompassing 
11q24.2q24.3 region 
ND: not done, NR: not reported, ID: Intellectual disability, MRI: magnetic resonance imaging, PTS: Paris-Trousseau Syndrome, VSD: ventricular septal defect 
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